آلیاژ

آلیاژ

Aliyaj
آلیاژ

آلیاژ

Aliyaj

دانلود معرفی و به کار گیری سوپر آلیاژها


معرفی و به کار گیری سوپر آلیاژها

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با

دانلود معرفی و به کار گیری سوپر آلیاژها

معرفی و به کار گیری سوپر آلیاژها
مروری کوتاه بر فلزات با استحکام در دمای بالا
اصول متالورژی سوپر آلیاژها
دسته بندی صنایع
فرمت فایل doc
حجم فایل 70 کیلو بایت
تعداد صفحات فایل 132

 

فصل اول

 مقدمه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

1-1- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

1-2- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

1-3- اصول متالورژی سوپر آلیاژها

سوپر آلیاژهای پایه آهن، نیکل و کبالت معمولاً دارای ساختار بلوری با شکل مکعبی با سطوح مرکزدار (FCC) هستند. آهن و کبالت در دمای محیط دارای ساختار FCC نیستند. هر دو فلز در دماهای بالا یا در حضور عناصر آلیاژی دیگر دگرگونی یافته و شبکه واحد آنها به FCC تبدیل می‌شود. در مقابل، ساختمان بلوری نیکل در همه دماها به شکل FCC است. حد بالایی این عناصر در سوپر آلیاژها توسط دگرگونی فازها و پیدایش فازهای آلوتروپیک تعیین نمی‌شود بلکه توسط دمای ذوب موضعی آلیاژها و انحلال فازهای استحکام یافته تعیین می‌گردد. در ذوب موضعی بخشی از آلیاژ که پس از انجماد ترکیب شیمیایی تعادلی نداشته است در دمایی کمتر از مناطق مجاور خود ذوب می‌شود. همه آلیاژها دارای یک محدوده دمایی ذوب شدن هستند و عمل ذوب شدن در دمای ویژه‌ای صورت نمی‌گیرد، حتی اگر جدایش غیر تعادلی عناصر آلیاژی وجود نداشته باشد. استحکام سوپر آلیاژها نه تنها بوسیله شبکه FCC و ترکیب شیمیایی آن، بلکه با حضور فازهای استحکام دهنده ویژه‌ای مانند رسوب‌ها افزایش می‌یابد. کار انجام شده بر روی سوپر آلیاژ (مانند تغییر شکل سرد) نیز استحکام را افزایش می‌دهد، اما این استحکام به هنگام قرارگیری فلز در دماهای بالا حذف می‌شود.

تمایل به دگرگونی از فاز FCC به فاز پایدارتری در دمای پایین وجود دارد که گاهی در سوپر آلیاژهای کبالت اتفاق می‌افتد. شبکه FCC سوپر آلیاژ قابلیت انحلال وسیعی برای بعضی عناصر آلیاژی دارد و رسوب فازهای استحکام دهنده (در سوپر آلیاژهای پایه آهن- نیکل و پایه نیکل) انعطاف‌پذیری بسیار عالی آلیاژ را به همراه دارد. چگالی آهن خالص gr/cm3 87/7 و چگالی نیکل و کبالت تقریباً gr/cm3  9/8 می‌باشد. چگالی سوپر آلیاژهای پایه آهن- نیکل تقریباً gr/cm3 3/8-9/7 پایه کبالت gr/cm3 4/9-3/8 و پایه نیکل gr/cm3 9/8-8/7 است.

چگالی سوپر آلیاژها به مقدار عناصر آلیاژی افزوده شده بستگی دارد. عناصر آلیاژی Cr, Ti و Al چگالی را کاهش و Re, W و Ta آنرا افزایش می‌دهند. مقاومت به خوردگی سوپر آلیاژها نیز به عناصر آلیاژی افزوده شده به ویژه Cr, Al و محیط بستگی دارد.

دمای ذوب عناصر خالص نیکل، کبالت و آهن به ترتیب 1453 و 1495 و 1537 درجه سانتی‌گراد است. دمای ذوب حداقل (دمای ذوب موضعی) و دامنه ذوب سوپر آلیاژها، تابعی از ترکیب شیمیایی و فرآیند اولیه است. به طور کلی دمای ذوب موضعی سوپر آلیاژهای پایه کبالت نسبت به سوپر آلیاژهای پایه نیکل بیشتر است. سوپر آلیاژهای پایه نیکل ممکن است در دمای oC1204 از خود ذوب موضعی نشان دهند. انواع پیشرفته سوپر آلیاژهای پایه نیکل تک بلور دارای مقادیر محدودی از عناصر کاهش دهنده دمای ذوب هستند و به همین لحاظ، دارای دمای ذوب موضعی برابر یا کمی بیشتر از سوپر آلیاژهای پایه کبالت هستند.

1-4- بعضی از ویژگیها و خواص سوپر آلیاژها

1- فولادهای معمولی و آلیاژهای تیتانیوم در دماهای بالاتر oC540 دارای استحکام کافی نیستند و امکان خسارت دیدن آلیاژ در اثر خوردگی وجود دارد.

2- چنانچه استحکام در دماهای بالاتر (زیر دمای ذوب که برای اکثر آلیاژها تقریباً 1371-1204 درجه سانتیگراد است) مورد نیاز باشد، سوپر آلیاژهای پایه نیکل انتخاب می‌شوند.

3- از سوپر آلیاژهای پایه نیکل می‌توان در نسبت دمایی بالاتری (نسبت دمای کار به دمای ذوب) در مقایسه با مواد تجاری موجود استفاده کرد. فلزات دیرگداز (نسوز) نسبت به سوپر آلیاژها دمای ذوب بالاتری دارند ولی سایر خواص مطلوب آنها را ندارند و به همین خاطر به طور وسیعی مورد استفاده قرار نمی‌گیرند.

4- سوپر آلیاژهای پایه کبالت را می‌توان به جای سوپر آلیاژهای پایه نیکل استفاده کرد که این جایگزینی به استحکام مورد نیاز و نوع خوردگی بستگی دارد.

5- در دماهای پایین‌تر وابسته به استحکام مورد نیاز، سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت کاربرد بیشتری پیدا کرده‌اند.

6- استحکام سوپر آلیاژ نه تنها مستقیماً به ترکیب شیمیایی بلکه به فرآیند ذوب، آهنگری و روش شکل‌دهی، روش ریخته‌گری و بیشتر از همه به عملیات حرارتی پس از شکل‌دهی، آهنگری یا ریخته‌گری بستگی دارد.

7- سوپر آلیاژهای پایه آهن- نیکل نسبت به سوپر آلیاژهای پایه نیکل و پایه کبالت ارزان‌تر هستند.

8- اکثر سوپر آلیاژهای کار شده برای بهبود مقاومت خوردگی دارای مقداری کروم هستند. مقدار کروم در آلیاژهای ریخته در ابتدا زیاد بود، اما به تدریج مقدار آن کاهش یافت تا عناصر آلیاژی دیگری برای افزایش خواص مکانیکی سوپر آلیاژهای دما بالا، به آنها افزوده شوند. در سوپر آلیاژهای پایه نیکل با کاهش کروم مقدار آلومینیوم افزایش یافت، در نتیجه مقاومت اکسیداسیون آنها در همان سطح اولیه باقی می‌ماند و یا افزایش می‌یابد، اما مقاومت در برابر انواع دیگر خوردگی کاهش می‌یابد.

9- سوپر آلیاژها مقاومت در برابر اکسیداسیون بالایی دارند اما در بعضی موارد مقاومت خوردگی کافی ندارند. در کاربردهایی مانند توربین هواپیما که دما بالاتر از oC760 است سوپر آلیاژها باید دارای پوشش باشند. سوپر آلیاژها در کاربردهای طولانی مدت در دماهای بالاتر از oC649 مانند توربین‌های گازی زمینی می‌توانند پوشش داشته باشند.

10- فن‌آوری پوشش‌دهی سوپر آلیاژها بخش مهمی از کاربرد و توسعه آنها می‌باشد. نداشتن پوشش به معنی کارآیی کم سوپر آلیاژ در دراز مدت و دماهای بالا است.

11- در سوپر آلیاژها به ویژه در سوپر آلیاژهای پایه نیکل بعضی از عناصر در مقادیر جزئی تا زیاد اضافه شده‌اند. در بعضی از آلیاژها تعداد عناصر کنترل شده موجود تا 14 عنصر و بیشتر می‌تواند باشد.

12- نیکل، کبالت، کروم، تنگستن، مولیبدن، رنیم، هافنیم و دیگر عناصر استفاده شده در سوپر آلیاژها اغلب گران بوده و مقدارشان در طی زمان متغیر است.

 

 

1-5- کاربردها

کاربرد سوپر آلیاژها در دماهای بالا بسیار گسترده و شامل قطعات و اجزاء هواپیما، تجهیزات شیمیایی و پتروشیمی است. موتور F119 که یکی از آخرین موتورهای هواپیماهای نظامی است، نشان داده شده است. دمای گاز در بخش داغ موتور (ناحیه خروجی موتور) ممکن است به دمایی بالاتر از oC 1093 برسد. با استفاده از سیستمهای خنک کننده دمای اجزاء فلزی کاهش پیدا می‌کند و سوپر آلیاژ که توانایی کار کردن در این دمای بالا را دارد، جزء اصلی بخش داغ به شمار می‌رود.

اهمیت سوپر آلیاژها در تجارت روز را می‌توان با یک مثال نشان داد. در سال 1950 فقط 10 درصد از کل وزن توربین‌های گاز هواپیما از سوپر آلیاژها ساخته می‌شد، اما در سال 1985 میلادی این مقدار به 50 درصد رسید.

در جدول 1-3 فهرستی از کاربردهای جاری سوپر آلیاژها آورده شده است.باید خاطر نشان ساخت، که همه کاربردها به استحکام در دمای بالا نیاز ندارند. ترکیب و مقاومت خوردگی سوپر آلیاژها، مواد استانداردی برای ساخت وسایل پزشکی بوجود آورده است. سوپر آلیا ژها همچنین کاربردهایی در دماهایی بسیار پایین پیدا کرده‌اند.

 

فصل دوم

 انتخاب سوپر آلیاژها

 

2-1- کلیات

در جدولهای 2-1 و 2-2 داده‌هایی درباره تنش گسیختگی سوپر آلیاژها آورده شده است. با مراجعه به شکل 1-1 می‌توانید یک نگاه کلی بر روی تنش گسیختگی سوپر آلیاژها داشته باشید. جمع‌آوری اطلاعات بیشتر به داده‌های ارائه شده، از طرف سازندگان و نیز دسترسی به اطلاعات فنی منتشر شده بستگی دارد. به استثناء محصولات نورد شده مانند ورق و میله در بقیه محصولات قطعاً نمی‌توان انتظار داشت، که ترکیب شیمیایی بدست آمده، از آزمون در آزمایشگاه‌های مختلف با یکیدگر برابر و یکسان باشند. ریز ساختار تنها عامل مهم در تعریف و تعیین خواص مکانیکی سوپر آلیاژهاست. تغییر ریز ساختار به معنی تغییر خواص و نتایج آزمون است. بدون توجه به ریز ساختار و شرایط آزمون نتایج بدست آمده، از آزمایش ترکیب شیمیایی از نوع آماری خواهند بود. دنبال کردن و نتیجه گیری از داده‌ها در هر آلیاژی کاری دشوار است.

2-2- شکل سوپر آلیاژها

سوپرآلیاژها به صورت ریخته (معمولاً عملیات حرارتی شده یا تحت فرآیندهای دیگر قرار گرفته) و یا کار شده (اغلب عملیات حرارتی شده یا تحت فرآیندهای دیگر قرار گرفته) هستند. محصولات ریخته ممکن است به صورت شمش برای ذوب مجدد، یا کار مجدد، مانند آهنگری و یا به شکل محصول نیمه تمام مشابه محصول نهایی باشند. محصولات کار شده اغلب، در حد واسط شکل نهایی مانند، محصولات نورد شده شامل میله، ورق، سیم، صفحه و غیره قرار دارند.

یکی از مسائل مهم متالوژی سوپرآلیاژها در قرن بیستم، تولید شکل نهایی یا نزدیک به آن محصولات کار شده بود. (اشکال ریخته نهایی به روش ریخته‌گری دقیق چندین دهه است که تولید می‌شوند). در نتیجه تلاش‌های به عمل آمده، فهم کامل فرآیندهای کار گرم و کار سرد، با استفاده از رایانه و به کار بردن فن‌آوری‌های جدید، طراحان را قادر ساخت که شکل محصولات را تا حد ممکن به شکل نهایی نزدیک گردانند.

2-3- دمای کاری سوپرآلیاژها

همانگونه که گفته شد، سوپر آلیاژها عموماً برای کار در دماهای بالاتر از oC 540 و کمتر از نقطه ذوب که معمولاً بالاتر از oC1204 است، مناسب هستند.

آلیاژهای پایه نیکل و پایه آهن- نیکل عموماص دارای حد دمایی در حدود oC816 هستند. در دماهای بالاتر از این حد از آلیاژهای ریخته استفاده می‌شود. استحکام اکثر سوپر آلیاژها توسط رسوب فاز ثانویه افزایش پیدا می‌کند، و حد بالائی محدوده دمائی استفاده از آلیاژ تحت تاثیر نوع پایه آلیاژ (پایه نیکل یا پایه آهن- نیکل) مقدار و نوع رسوب و شکل آلیاژ (ریخته یا کار شده) است.

امروزه در صنعت سوپر آلیاژها کاملاً مشخص است که از چه نوع آلیاژ ویژه‌ای برای کار در یک دمای مشخص استفاده شود. به عنوان مثال اکثر سوپر آلیاژهای پایه نیکل و پایه آهن- نیکل کار شده، فقط در دماهای oC704-649 مورد استفاده قرار می‌گیرند. محدوده دمایی بعضی از سوپر آلیاژها در دمای زیر oC540 و اکثراً کمتر از oC427 شروع می‌شود. سوپر آلیاژهای کار شده در توربین‌های گازی استفاده می‌شوند، زیرا آلیاژهای تیتانیوم برای این کار مناسب نیستند. آلیاژهای ریخته در بیشترین دما می‌توانند کار کنند و از آنها در موتورهای توربین استفاده می‌شود.

سوپر آلیاژها معمولاً دارای یک ویژگی مقدم بر دیگر ویژگی‌ها هستند. در یک ترکیب شیمیایی مشابه، اگر به صورت ریخته یا کار شده استفاده شوند ممکن است عملیات حرارتی متفاوتی بر روی آنها انجام گیرد. زمانی که یک سوپر آلیاژ به همان شکل تولید شده استفاده می‌شود برای بهینه کردن یکی از ویژگی‌های آن می‌توان از یک عملیات فرآیندی استفاده کرد. به عنوان مثال آلیاژ Waspaloy کار شده در ساخت دیسک توربین گاز استفاده می‌شود. با تنظیم شرایط فرآیند تولید این آلیاژ می‌توان با عملیات حرارتی فرآیندی استحکام تسلیم و در نتیجه استحکام گسیختگی خزش آن را بهبود بخشید.

2-4- مقایسه سوپر آلیاژهای ریخته و کار شده

2-4-1- سوپر آلیاژهای کار شده

یک آلیاژ کار شده معمولاً از شمش‌های ریخته به دست می‌آید اما چندین بار تغییر شکل و عملیات پیش گرم روی آن انجام می‌شود، تا به حالت نهایی خود برسد. آلیاژهای کار شده به مراتب همگن‌تر از آلیاژهای ریخته که معمولاً دارای جدایش ناشی از فرآیند انجماد هستند می‌باشند. جدایش نتیجه طبیعی انجماد آلیاژ است، اما در بعضی از موارد به صورت شدیدتری روی می‌دهد.

آلیاژهای کار شده، معمولاً انعطاف‌پذیرتر از آلیاژهای ریخته هستند. محصولات نورد مانند میله‌ها از نوع کار شده هستند. انعطاف پذیری آلیاژ باعث می‌شود که بتوان آنها را به قطعات و اشکال بهتری درآورد. قطعات ‎آهنگری نیز محصولات کار شده هستند که مزیت انعطاف پذیری بالاتر ماده کار شده برای تولید اشکال بزرگتر مانند، دیسک‌های توربین‌های گازی را دارند.

هر آلیاژ را نمی‌توان به شکل کار شده در آورد. بعضی از قطعات فقط به صورت ریخته تولید می‌شوند. آلیاژهایی که کارپذیری خیلی کمی دارند، ابتدا با متالورژی پودر تولید شده و سپس آهنگری می‌شوند. برای ساخت دیسک‌های سنگین که در ناحیه دماهای متوسط توربین گازی کار می‌کنند، از آلیاژهای متالورژی پودر و یا آلیاژهای کار شده استفاده می‌شود. با فرآیند متالورژی پودر می‌توان قطعاتی تولید کرد که مستقیماً ماشین‌کاری شوند.

2-4-2- سوپر آلیاژهای ریخته

سوپرآلیاژهای ریخته در ناحیه دما بالای توربین‌های گاز، به ویژه در قطعاتی نظیر پره‌های هوا یافت می‌شوند. اکثر آلیاژهای ریخته از نوع چند بلوری (PC)[1] با دانه‌های هم محور و بعضی دیگر از نوع انجماد جهت‌دار یافته (DS)[2] هستند. ریخته‌های چند بلوری دارای دانه‌هایی هستند که اندازه آنها از یک قطعه به قطعه دیگر تغییر می‌کند. دانه‌های یک ریخته انجماد جهت‌دار یافته، با یکدیگر موازی هستند (عمدتاً به موازات محور طولی پره) و تحت عنوان قطعات انجماد جهت‌دار یافته دانه ستونی (CGDS)[3] شناخته می‌شوند. ممکن است یک ریخته انجماد جهت‌دار یافته فقط دارای یک بلور با محور موازی با محور طولی پره‌های توربین باشد، در این صورت به آن تک بلور انجماد جهت‌دار یافته (SCDS)[4] گفته می‌شود. آلیاژهای ریخته نسبت به آلیاژهای کار شده استحکام بیشتری در دمای بالا دارند.

ریخته‌های چند بلوری دانه درشت، نسبت به قطعات آهنگری شده دانه‌ریز استحکام بهتری در دماهای بالا دارند. ترکیب شیمیایی آلیاژ ریخته به نحو موثری تعیین کننده استحکام دما بالای آن است. در فرآیند آهنگری ترکیب شیمیایی آلیاژ نقش چندانی در تعیین قابلیت ‎آهنگری ندارد. سوپرآلیاژهای پایه نیکل ریخته دارای بالاترین استحکام گسیختگی خزش در دماهای بالا هستند، به همین خاطر از آنها برای کار در پره‌های هوا توربین گاز تحت شرایط دمای بالا و تنش زیاد استفاده می‌شود. در طرف مقابل قطعات آهنگری دانه‌ریز، استحکام تسلیم بالاتر و استحکام خستگی کم دامنه (LCF)[5] بهتری در دماهای متوسط دارند، و به همین دلیل از آنها در ساخت دیسک‌های آهنگری شده استفاده می‌شود.

2-5- خواص سوپرآلیاژها

2-5-1- کلیات

استحکام‌دهی سوپرآلیاژها توسط سخت‌کاری محلولی (تداخل اتم‌های جانشینی همراه با تغییر شکل)، کار سختی (انرژی نهان ناشی از تغییر شکل) و رسوب سختی (تداخل رسوب‌ها همراه با تغییر شکل) افزایش می‌یابد. هم چنین ایجاد کاربیدها (توزیع مناسب از تداخل فازهای ثانویه به همراه تغییر شکل) به ویژه در سوپر آلیاژهای پایه کبالت افزایش استحکام را در پی دارد. استحکام یک عبارت نسبی است و توسط نوع آن تعریف می‌شود. بعضی از کاربردها به استحکام تسلیم و بعضی به استحکام نهایی نیاز دارند (خواص کوتاه مدت). در بعضی دیگر از کاربردها استحکام گسیختگی خزش اهمیت دارد (خوص بلند مدت). استحکام گسیختگی خزش سوپرآلیاژهای پایه نیکل و پایه آهن- نیکل در دماهای بالاتر از oC650 به طور قابل ملاحظه‌ای نسبت به سوپرآلیاژهای پایه کبالت پائین‌تر است.

2-5-2- سوپر آلیاژهای پیشرفته

سوپرآلیاژهای پایه آهن- نیکل قدیمی مانند آلیاژ 6-25-16 دارای 16% کروم، 25% نیکل و 6% مولیبدن بودند. اولین سوپر آلیاژهای نیکل شامل Nimonic و Inconel از نوع استحکام یافته با محلول جامد بودند. در سوپر آلیاژهای پایه نیکل و پایه آهن- نیکل بعدی مقادیر کمی Al (3-2 درصد) و Ti افزوده شده تا در اثر رسوب فاز  استحکام در دمای بالا افزایش یابد. بعداً مقدار Al در این سوپر آلیاژها تا 6 درصد افزایش یافت و به دلیل بیشتر شدن نسبت حجمی فاز  در زمینه  سختی دمای بالای آلیاژ افزایش یافت. سوپرآلیاژهای پایه نیکل ریخته بیشترین مقایر عناصر سخت کننده را دارند، و تعدادی از قطعات به روش‌های CGDS و SCDS از آنها ساخته شده‌اند.

تعدادی از سوپرآلیاژهای دارای عناصر سخت کننده بیشتر ( بیش از 40 درصد) به روش متالورژی پودر و کار شده تولید می‌شوند. سوپرآلیاژهای پایه آهن- نیکل با  تقریباً 20%، به حداکثر استحکام خود می‌رسند، و از این نظر نمی‌توانند با سوپرآلیاژهای پایه نیکل کار شده در محدوده دمایی متوسط رقابت کنند. حتی آلیاژهایی با تقریباً  40% (مانند آلیاژ Astroloy) کارایی دراز مدتی در حد بالایی محدوده دمایی متوسط ندارند. امروزه از آلیاژهای متالورژی پودر (P/M) با  بالا (تقریباً 50%) برای کار در حد بالایی محدوده دمایی متوسط استفاده می‌شود، و آلیاژهای کار شده از طراحی‌ها حذف شده‌اند.

سوپرآلیاژهای پایه کبالت ریخته چند بلوری، دمای ذوب بالاتری نسبت به سوپرآلیاژهای پایه نیکل دارند، و به همین خاطر استحکام آنها در دماهای بالاتر از oC1093 بیشتر است. اما واقعیت این است که سوپرآلیاژهای پایه نیکل (SCDS) توانایی کار در دماهای بالاتر از oC1093 را دارند، و در بعضی موارد جایگزین آلیاژهای پایه کبالت شده‌اند. آلیاژهای پایه کبالت ریخته با شبکه بلوری مکعبی با سطح مرکزدار (آستنیتی FCC)، زمینه محلول جامد و دارای کاربیدهای پیچیده، دارای سابقه موفقی در استفاده در پره‌های هواشکن توربین گاز (اکثراً به صورت پره‌های هواشکن و گاهی به صورت تیغه‌های توربین) هستند. آلیاژهای پایه کبالت کار شده کاربردهایی در محفظه‌های احتراق توربین گاز پیدا کرده‌اند.

2-5-3- خواص مکانیکی و کاربرد سوپرآلیاژها

استحکام تابعی از زمان است و مدت زمان قرارگیری قطعه در سرویس و دمای آن از عوامل موثر بر انتخاب یک سوپرآلیاژ ویژه هستند. نرخ افت بعضی از آلیاژها در مقایسه با آلیاژهای دیگر کمتر است. به عنوان مثال اگر چه خواص مکانیکی و کاربرد سوپرآلیاژهای پایه نیکل استحکام یافته با فاز اکسید توزیع شده (ODS) [6] دارای استحکامی پایین‌تر از سوپر آلیاژهای پایه نیکل رسوب سخت شده هستند، ولی نرخ کاهش استحکام گسیختگی خزش کمتری نسبت به انواع مشابه رسوب سخت شده دارند. در نتیجه وقتی نرخ کاهش استحکام بهتر در اولویت اول، قرار داشته و استحکام اولیه نیز قابل قبول باشد، یک آلیاژ ODS به مدت طولانی‌تری می‌تواند کار کند.

در شکل 2-2 رفتار استحکام گسیختگی خزش یک آلیاژ ODS با سه گروه مختلف سوپر آلیاژها مقایسه شده است.

آلیاژی که عمر گسیختگی طولانی‌تری دارد، برای تولید قطعاتی که دمای کاری آنها در داخل محدوده خزش قرار دارد، ترجیح داده می‌شود. یک آلیاژ انجماد جهت‌دار یافته دانه ستونی، در شرایط خزش با کرنش پایین دارای استحکام کمتری نسبت به آلیاژ چندبلوری است.

سوپرآلیاژها انعطاف‌پذیر هستند، ولی عموماً انعطاف‌پذیری سوپرآلیاژهای پایه کبالت نسبت به سوپرآلیاژهای پایه آهن- نیکل و پایه نیکل کمتر است. سوپرآلیاژهای پایه نیکل و پایه آهن- نیکل در شرایط اکسترود شده، آهنگری شده و یا نورد شده وجود دارند اما آلیاژهای پر استحکام‌تر فقط در شرایط ریخته یافت می‌شوند.

 

دانلود معرفی و به کار گیری سوپر آلیاژها

دانلود پژوهش خواص سوپرآلیاژها و مقاومت آنها در برابر خوردگی


دانلود پژوهش خواص سوپرآلیاژها و مقاومت آنها در برابر خوردگی

از آغاز پیدایش سوپر آلیاژها، تعداد زیادی آلیاژ شناخته شده و مورد مطالعه قرار گرفته و تعدادی نیز به عنوان اختراع ثبت گردیده‌اند تعدادی از آنها در طول سالیان گذشته غربال شده و تعدادی به صورت گسترده مورد استفاده قرار گرفته‌اند به خاطر اینکه همه آلیاژها را نمی‌توان بر شمرد مثالهائی از آلیاژهای قدیم و جدید برای نشان دادن متالورژی فیزیکی سیستم‌های سوپر

دانلود دانلود پژوهش خواص سوپرآلیاژها و مقاومت آنها در برابر خوردگی

خواص سوپرآلیاژها 
مقاومت سوپرآلیاژها در برابر خوردگی
دسته بندی فنی و مهندسی
فرمت فایل doc
حجم فایل 86 کیلو بایت
تعداد صفحات فایل 196

فصل اول

سوپر آلیاژها در دمای بالا

1-1- نحوه و زمان استفاده از این فصل

به دشواری می‌توان اطلاعات مختصر ولی دقیقی را در یک موضوع متمرکز کرد. مجریان و مدیران به ویژه در صنایعی که در آنها از تعدادی سوپر آلیاژ استفاده می‌شود، اغلب فقط به اطلاعات پایه با حداقل حواشی و مطالب اضافی نیاز دارند. موسسه‌های خرید یا کارشناسی برای انجام بهتر کار خود به دانسته‌های نسبتاً کمی نیاز دارند. مهندسان نیاز به اطلاعاتی با جزئیات بیشتر ولی سریع درباره انواع آلیاژها و طراحی اولیه دارند. اساس این کتاب بر پایه در اختیار گذاشتن اطلاعات تجربی کافی برای حل مسائل، پاسخ به پرسش‌های مربوط به سوپر آلیاژها و داشتن معلومات کافی درباره سوپر آلیاژها گذاشته شده است. مقدمه این فصل، با مرور مختصری بر موضوعات اصلی کتاب بعضی از نیازهای فوق را تامین می‌کند. فصل حاضر با خلاصه‌ای از تاریخچه سوپر آلیاژها شروع شده و سپس طبیعت سوپر آلیاژها را شرح می‌دهد. این مقدمه موضوعات گوناگون گسترده‌ای را که در به کارگیری سوپر آلیاژها باید در نظر گرفته شوند به طور مستقیم و ساده به خواننده معرفی می‌نماید. استفاده کننده از این کتاب ممکن است، با متالورژی پایه سوپر آلیاژها آشنا و یا کاملاً مبتدی باشد. در هر صورت این کتاب خواننده را به موضوع سوپر آلیاژها نزدیک خواهد ساخت. در این کتاب کمتر به تئوری پرداخته شده و تاکید روی دانسته‌های تجربی شده است. اگر موضوع برایتان کاملاً جدید است ممکن است مقدمه این فصل در بر گیرنده کلیه نیازهای شما باشد. اگر تا اندازه‌ای و یا کاملاً در این زمینه مطلع هستید فهرست مطالب را کنترل کنید، تا آنچه را که شما می‌توانید در هر فصل بیایید، مشاهده نمایید.

1-2- تاریخچه

طراحان نیاز فراوانی به مواد مستحکم‌تر و مقاوم‌تر در برابر خوردگی دارند. فولادهای زنگ نزن توسعه داده شده و به کار رفته در دهه‌های دوم و سوم قرن بیستم میلادی، نقطه شروعی برای برآورده شدن خواسته‌های مهندسی در دماهای بالا بودند. بعداً معلوم شد که این مواد تحت این شرایط دارای استحکام محدودی هستند. جامعه متالوژی با توجه به نیازهای روز افزون بوجود آمده، با ساخت جایگزین فولاد زنگ نزن که سوپر آلیاژ نامیده شد به این تقاضا پاسخ داد. البته قبل از سوپر آلیاژها مواد اصلاح شده پایه آهن به وجود آمدند، که بعدها نام سوپر آلیاژ به خود گرفتند.

با شروع و ادامه جنگ جهانی دوم توربین‌های گازی تبدیل به یک محرک قوی برای اختراع و کاربرد آلیاژها شدند. در سال 1920 افزودن آلومینیوم و تیتانیوم به آلیاژهای از نوع نیکروم به عنوان اختراع به ثبت رسید، ولی صنعت سوپر آلیاژها با پذیرش آلیاژ کبالت (ویتالیوم) برای برآورده کردن نیاز به استحکام در دمای بالا در موتورهای هواپیما پدیدار شدند. بعضی آلیاژهای نیکل- کروم (اینکونل و نیمونیک) مانند سیم نسوز کم و بیش وجود داشتند و کار دستیابی به فلز قوی‌تر در دمای بالاتر برای رفع عطش سیری ناپذیر طراحان ادامه یافت و هنوز هم ادامه دارد.

1-3- معرفی و به کار گیری سوپر آلیاژها

سوپر آلیاژها؛ آلیاژهای پایه نیکل، پایه آهن- نیکل و پایه کبالت هستند که عموماً در دماهای بالاتر از oC540 استفاده می‌شوند. سوپر آلیاژهای پایه آهن- نیکل مانند آلیاژ IN-718 از فن‌آوری فولادهای زنگ نزن توسعه یافته و معمولاً به صورت کار شده می‌باشند. سوپر آلیاژهای پایه نیکل و پایه کبالت بسته به نوع کاربرد و ترکیب شیمیایی می‌توانند به صورت ریخته یا کار شده باشند.

از آغاز پیدایش سوپر آلیاژها، تعداد زیادی آلیاژ شناخته شده و مورد مطالعه قرار گرفته و تعدادی نیز به عنوان اختراع ثبت گردیده‌اند. تعدادی از آنها در طول سالیان گذشته غربال شده و تعدادی به صورت گسترده مورد استفاده قرار گرفته‌اند. به خاطر اینکه همه آلیاژها را نمی‌توان بر شمرد مثالهائی از آلیاژهای قدیم و جدید برای نشان دادن متالورژی فیزیکی سیستم‌های سوپر آلیاژها آورده شده است (به فصل‌های 3 و 12 مراجعه کنید) در شکل 1-1 رفتار تنش- گسیختگی سه گروه آلیاژی با یکدیگر مقایسه شده‌اند (سوپر آلیاژهای پایه آهن- نیکل، پایه نیکل و پایه کبالت). در جدولهای 1-1 و 1-2 فهرستی از سوپر آلیاژها و ترکیب شیمیایی آنها آورده شده است.

سوپر آلیاژهای دارای ترکیب شیمیایی مناسب را می‌توان با آهنگری و نورد به اشکال گوناگون در آورد. ترکیب‌های شیمیایی پر آلیاژتر معمولاً به صورت ریخته‌گری می‌باشند. ساختارهای سرهم بندی شده را می‌توان با جوشکاری یا لحیم‌کاری بدست آورد، اما ترکیب‌های شیمیایی که دارای مقادیر زیادی از فازهای سخت کننده هستند، به سختی جوشکاری می‌شوند. خواص سوپر آلیاژها را با تنظیم ترکیب شیمیایی و فرآیند (شامل عملیات حرارتی) می‌توان کنترل کرد و استحکام مکانیکی بسیار عالی درمحصول تمام شده بدست آورد.

1-3- مروری کوتاه بر فلزات با استحکام در دمای بالا

استحکام اکثر فلزات در دماهای معمولی به صورت خواص مکانیکی کوتاه مدت مانند استحکام تسلیم یا نهایی اندازه‌گیری و گزارش می‌شود. با افزایش دما به ویژه در دماهای بالاتر از 50 درصد دمای نقطه ذوب (بر حسب دمای مطلق) استحکام باید بر حسب زمان انجام اندازه‌گیری بیان شود. اگر در دماهای بالا باری به فلز اعمال شود که به طور قابل ملاحظه‌ای کمتر از بار منجر به تسلیم در دمای اتاق باشد، دیده خواهد شد که فلز به تدریج با گذشت زمان ازدیاد طول پیدا می‌کند. این ازدیاد طول وابسته به زمان خزش نامیده می‌شود و اگر به اندازه کافی ادامه یابد به شکست (گسیختگی) قطعه منجر خواهد شد. استحکام خزش یا استحکام گسیختگی (در اصطلاح فنی استحکام گسیختگی خزش یا استحکام گسیختگی تنشی نامیده می‌شود) همانند استحکام‌های تسلیم و نهایی در دمای اتاق یکی از مولفه‌های مورد نیاز برای فهم رفتار مکانیکی ماده است. در دماهای بالا استحکام خستگی فلز نیز کاهش پیدا می‌کند. بنابراین برای ارزیابی توانایی فلز با در نظر گرفتن دمای کار و بار اعمال شده لازم است، استحکام‌های تسلیم و نهایی، استحکام خزش، استحکام گسیختگی و استحکام خستگی معلوم باشند. ممکن است به خواص مکانیکی مرتبط دیگری مانند مدول دینامیکی، نرخ رشد ترک و چقرمگی شکست نیز نیاز باشد. خواص فیزیکی ماده مانند ضریب انبساط حرارتی، جرم حجمی و غیره فهرست خواص را تکمیل می‌کنند.

1-4-اصول متالورژی سوپر آلیاژها

 

 

196 صفحه فایل Word

دانلود دانلود پژوهش خواص سوپرآلیاژها و مقاومت آنها در برابر خوردگی

دانلود معرفی و طبقه بندی فولادهای میکروآلیاژی


دانلود معرفی و طبقه بندی فولادهای میکروآلیاژی

فولادهای میکروآلیاژی ، ترمومکانیکال،‌ آهنگری

دانلود دانلود معرفی و طبقه بندی فولادهای میکروآلیاژی

فولادهای میکروآلیاژی 
ترمومکانیکال
آهنگری
دسته بندی مواد و متالوژی
فرمت فایل doc
حجم فایل 2849 کیلو بایت
تعداد صفحات فایل 176

چکیده

فولادهای میکروآلیاژی به عنوان خانواده‌ای از فولادهای کم آلیاژ با استحکام بالا هستند تولید فولادهای میکروآلیاژی یکی از مهمترین پیشرفت های متالورژیکی چند دهه اخیر بوده است ، این فولادها به خاطر داشتن ترکیب عالی از خواصی همچون استحکام بالا ، چقرمگی مطلوب ، انعطاف پذیری و قابلیت جوشکاری مناسب ،‌از اهمیت ویژه‌ای برخوردارند مقادیر بسیار جزئی از عناصر میکروآلیاژی می توانند تأثیر به سزایی بر خواص نهایی فولاد داشته باشند .

از آنجایی که این فولادها هنوز در دست تحقیق می باشند و همچنین از آنجائیکه یکی از روش های بهبود خواص در فولادهای میکروآلیاژی فرآیندهای ترمومکانیکی (‌از قبیل Hot  rolling  Forgingو...) می باشند لذا در این پروژه هدف ، بررسی این فرآیند ها و همچنین معرفی و طبقه‌بندی فولادهای میکروآلیاژی می باشد .

کلید واژه : فولادهای میکروآلیاژی ، ترمومکانیکال،‌ آهنگری


فهرست مطالب

عنوان                                               صفحه

فصل اول مقدمه ........................ 1

فصل دوم :‌مروری بر منابع .............. 4

1-2- فولادهای کم آلیاژ و دارای استحکام بالا   5

1-1-2- طبقه بندی فولادهای کم آلیاژ دارای استحکام بالا 6

2-1-2- اثرات افزودنی های میکروآلیاژ کننده    8

3-1-2- انواع گوناگون فولادهای فریت – پرلیت میکروآلیاژ شده .................................. 8

4-1-2- اثرات عناصر میکروآلیاژی روی مشخصه های به عمل آوری ................................. 18

5-1-2- به عمل آوری فولادهای پتک کاری میکروآلیاژ شده 19

6-1-2- کنترل خصوصیات ............... 19

7-1-2-اثرات عناصر میکروآلیاژی شده روی پتک کاری   20

2-2- مهندسی محصولات آهنگری فولادهای ساختمانی میکروآلیاژی 22

3-2- تبلور مجدد استاتیکی فولاد آستنیت تغییر شکل یافته و رسوب سینتیک القا شده در فولادهای میکروآلیاژی وانادیوم   35

1-3-2- تبلور مجدد استاتیکی ......... 37

2-3-2- نمودارهای دما و زمان رسوب PTT 48

3-3-2- مقایسه ی بین Tnr , SRCT  ....... 51

4-2- ریز ساختار و ویژگی های فولاد کم آلیاژ مقاوم به دما 54

1-4-2- ترکیب شیمیایی .............. 58

2-4-2-پردازش و عمل آوری ترمو مکانیکی 59

3-4-2- ریز ساختار ................. 62

4-4-2- تنش تسلیم دمای فزاینده ..... 63

5-4-2- سختی ضربه ای ............... 65

6-4-2- مقاومت به دما............... 66

5-2- فرآیند ترمو مکانیکی و ریز ساختار فولاد میکرو آلیاژی و محصولات میله ای سیمی.................... 68

 1-5-2- میکروساختار و خواص آن ...... 72

2-5-2- پیشرفت های بعدی ............. 76

6-2- بهبود استحکام ضربه و خواص کششی در فولاد میکروآلیاژی آهنگری گرم وانادیوم – نیوبیوم از طریق کنترل میکروساختار 77

1-6-2- خواص مکانیکی ................ 80

2-6-2- میکروساختار ................. 85

3-6-2- میکروساختار ................. 90

4-6-2- خواص مکانیکی ................ 93

فصل سوم:نتیجه گیری و پیشنهادات........ 95

نتیجه گیری ............................ 96

پیشنهادات............................. 98

مراجع ................................ 99 


دانلود دانلود معرفی و طبقه بندی فولادهای میکروآلیاژی

دانلود بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن


بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

مس، اولین فلزی است که توسط انسان مورد استفاده قرار گرفت پنج هزار سال پیش، یونانی ها و رومیان باستان، آن را از جزیره قبرس کنونی استخراج می کردند یونانیان آن را به نام کالکو (Chalco) و رومیان به نام آیس (Aes) می شناختند و چون از جزیره قبرس استخراج می شد آن را آیس سیپریم (Cypirum) نامیدند بعداً در زبان های مختلف اروپایی ، به دلیل تلفظ های متفاوت کلمه

دانلود بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن
بررسی حلالیت گازها در مس و آلیاژهای آن
حلالیت اکسیژن در مس
دسته بندی ساخت و تولید
فرمت فایل doc
حجم فایل 1267 کیلو بایت
تعداد صفحات فایل 34

قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

مس، اولین فلزی است که توسط انسان مورد استفاده قرار گرفت. پنج هزار سال پیش، یونانی ها و رومیان باستان، آن را از جزیره قبرس کنونی استخراج می کردند. یونانیان آن را به نام کالکو (Chalco) و رومیان به نام آیس (Aes) می شناختند و چون از جزیره قبرس استخراج می شد آن را آیس سیپریم (Cypirum) نامیدند. بعداً در زبان های مختلف اروپایی ، به دلیل تلفظ های متفاوت کلمه، سپیریم شکل های متفاوتی به خود گرفت، به طوری که امروز در انگلیسی آن را کوپر (Copper) و درآلمانی (Kupfer) و در فرانسه (‍Cuivre) می نامند.

این فلز، به دلیل سختی توأم با انعطاف پذیری، هدایت حرارتی و الکتریکی بالا، قبول عملیات مکانیکی گوناگون، شکل پذیری فوق العاده ، مقاومت در برابر خوردگی، رنگ های زیبا، غیرمغناطیسی بودن، قابلیت ریخته گری مناسب، لحیم کاری نرم و سخت، جوش پذیری، غیر سمی بودن، .... و نیز امکان تهیه آلیاژهای گوناگون در کنار سایر فلزات، به یک عنصر بسیار مفید و غیر قابل چشم پوشی در صنایع بشری آمده است.

مس با جرم اتمی 54/63 و ساختار (FCC) در 0c1083 ذوب می شود. این عنصر، به دلایل متالورژیکی، به عنوان حلال ترین فلز شناخته شده و به غیر از سرب، تقریباً کلیه عناصر با آن، قابلیت انحلال دارند.

از نظر شیمیایی، مس از فلزات نجیب به شمار آمده و در جدول تانسیون، پس از نقره قرار دارد. مس در مجاورت هوا و رطوبت، از یک قشر نازک اکسید مس که مخلوطی از CuO و Cu2O است پوشیده می شود. این قشر نازک، بقیه فلز را از اکسیده شدن محافظت می کند. اگر این اکسیدها مدت زیادی در مجاورت هوا قرار گیرند و یا سطح مس به شدت اکسیده شود، رنگ مایل به سیاه، آن ، به تدریج به رنگ سبز که مخلوطی از سولفات و یا کلرورهای قلیایی است تبدیل می شود که آن را زنگار (Patina) می گویند. هوای محیط، در تشکیل این ترکیبات بسیار مؤثر است. به طوری که اکثراً در نواحی صنعتی، ترکیبات سولفات به فرمول 3Cu(OH)2 و CuSo4 و در مجاورت دریاها ترکیبات کلروری مثل 3Cu(OH)2 و CuCl2 به وجود می آید.

مس مذاب، قابلیت انحلال شدیدی برای گازهای مختلف دارد و این پدیده، هنگام انجماد به سرعت کاهش می یابد. مقدار حل شدن گازها در مس، به درجه حرارت و فشار جزیی گازها در محیط خارج بستگی دارد.

گازها در مس بیشتر به صورت بیشتر به صورت اتمی حل می شوند. مقدار حلالیت گازها را می توان به صورت رابطه    نمایش داد که در آن C مقدار گاز حل شده بر حسب سانتی متر مکعب در هر 100 گرم فلز مس بوده، P فشار جزئی گاز در محیط خارج و K ضریب ثابتی است که به درجه حرارت بستگی دارد. با توجه به رابطه بالا می توان نتیجه گرفت که افزایش دما با افزایش K و در نتیجه افزایش مقدار گاز حل شده مذاب رابطه مستقیم دارد.

بررسی حلالیت گازها در مس و آلیاژهای آن

گازهایی مثل اکسیژن، هیدروژن و ... در مس قابل حل بوده و تأثیراتی بر آن می گذارد و که بدین قرار است :

- حلالیت اکسیژن

اکسیژن، به صورت اتمی در درجه حرارت اوتکتیک 1065 درجه سانیتگراد حدود 009/0 درصد و درجه حرارت محیط حدود 002/0 درصد در مس قابل حل است. در صورتی که مقدار اکسیژن، این حدود باشد، با مس وارد ترکیب شده و اتکتیکی به صورت Cu-Cu2O با حدود 39/0 درصد اکسیژن تشکیل می دهد.

 

Cu-Cu2O شکل (1) دیاگرام تعادلی

 

شکل (2) حلالیت اکسیژن در مس

همانگونه که از منحنی های شکل (1) و (2) مشخص است، ترکیب اکسید فلزی Cu2O در درجه حرارت 1000 تا 1050 درجه سانتی گراد پایدار است. در درجه حرارت های پایین تر، این ترکیب به CuO تبدیل می شود. بنابراین پس از جوشکاری، براساس یکی از واکنش های زیر، CuO در اثر سرد شدن تشکیل خواهد شد.

2Cu2O + O2      4 Cu2O

Cu2O       CuO +Cu

در اثر جوشکاری و در درجه حرارت های بالاتر از 1050 درجه سانتیگراد، Cu2O تجزیه شده و اکسیژن آزاد می کند که در اثر فعل و انفعالات شیمیایی جانشینی با سایر عناسر موجود، ترکیب شده و بخار آب و سایر اکسیدهای فلزی، تولید می کند.

همچنین در هنگام پیشگرم کردن و شروع جوشکاری در حرات های حدود 700 درجه سانتی گراد، مس با یک شعله سبز رنگ با اکسیژن محیط ترکیب شده و CuO تولید می کند :  

  

که در درجه حرارت های بالاتر CuO  حاصله بهCu2O    تبدیل خواهد شد.

  

با توجه به این نتایج و بررسی انجام شده می توان گفت که مقدار جذب اکسیژن در مس مذاب به زمان بستگی دارد و از این رو، برای محافظت مس مذاب از ورود اکسیژن، بهترین روش استفاده از جوشکاری با سرعت بالا و وجود گازهای محافظ حوضچه است.

حلالیت هیدروژن

هیدروژن در مس مذاب، در 1083 درجه سانتیگراد به میزان 6 سانتی متر مکعب در هر 100 گرم از فلز حل می شود ولی در حضور عناصر آلیاژی مثل قلع، روی یا آلومینیوم این حلالیت به شدت کاهش می یابد. به طور مثال ، در آْلیاژ مس با 10 درصد آلومینیوم، حلالیت هیدروژن تا 50 درصد کاهش می یابد. جذب هیدروژن توسط حوضچه مذاب از منابع مختلف مثل هوای محیط، مواد مصرفی، رطوبت و چربی و غیره انجام می گیرد. با انجماد مس نیز، میزان حلالیت آن تا حدود    کاهش می یابد. در صنعت مس، تأثیر هیدروژن چه در حالت مذاب و چه در حالت جامد، یکی از فاکتورهای مهم به حساب می آید. در حالت جامد، اگر مس در درجه حرارت های بالا با هیدروژن در تماس باشد، هیدروژن به دلیل دارا بودن شعاع اتمی بسیار کوچکتر نسبت به مس می تواند در مس نفوذ کرده و سپس تشکیل ملکول H2 بدهد و اگر در مس اکسیژن وجود داشته باشد، واکنش زیر حاصل خواهد شد :

  

بخار آب تولید شده بر خلاف هیدروژن، در مس نامحلول است و بنابراین در اطراف مرزدانه ها جمع و به علت تراکم و فشار زیادی که ایجاد می کند، مرزدانه ها را سست، ضعیف و شکننده می کند. (3). این خاصیت خطرناک به هیدروژن تردی شهرت پیدا کرده، بنابراین در زمان جوشکاری باید از قطعات مسی و پر کننده هایی استفاده کرد که قبلاً اکسیژن زدایی شده باشند.

 

 

شکل (3) هیدروژن تردی در مس

 

 

 

 

شکل (4) حلالیت هیدروژن در درجه حرارت های مختلف در مس

بر اساس آنچه گفته شد، نتیجه گرفته می شود که معمولاً هیدروژن مازاد بر حلالیت، به دو صورت در مس بروز می نماید:

- هیدروژن ملکولی که تحت تأثیر فشار داخلی و در جه حرارت مس مذاب انبساط یافته، و تخلخل های درشت در وسط جوش ایجاد می کند

- هیدروژن اتمی آزاد شده که در اثر فعل و انفعلاتی تولید بخار آب می کند و در واقع تأثیر مشترک هیدروژن و اکسیژن را به قطعه مسی به صورت تخلخل های ریز و پراکنده، تحمیل می کند.

نکته آخر این که در هر درجه حرارت، افزایش مقدار اکسیژن به تقلیل حلالیت هیدروژن و بالعکس منجر می شود. در نمودار شکل (5)  نسبت حلالیت اکسیژن و هیدروژن در مس مذاب در دمای حدود 1200 درجه سانتی گراد، نشان داده شده است.

 

 

 

شکل (5) حلالیت توأم اکسیژن و هیدروژن در مس مذاب

- حلالیت سایر گازها

در جوشکاری مس، گازهایی مثل نیتروژن و Co2 کلاً بی تأثیر بوده و حتی می توانند حوضچه مذاب را از گازهای ناخالص دیگر حفاظت نمایند. اما حضور گازهای گوگردی مثل SO2 ، علاوه بر ایجاد حباب های گازی و در نهایت تخلخل، با ایجاد سولفور مس Cu2S تأثیر زیادی در کاهش خواص مکانیکی مس خواهند داشت.

تأثیرات عناصر آلیاژی بر خواص جوش پذیری مس

عناثر آلیاژی مختلف، بر حسب خواص و شرایط خاص خود، تأثیرات گوناگونی بر خواص فیزیکی و مکانیکی مس به ویژه در حالت جوشکاری اعمال می کنند.

عناصر افزودنی برای بهبود قابلیت ماشینکاری مثل سرب، گوگرد و تلوریم

سرب مایع در داخل آلیاژهای مس، یکی از عیوبی است که ناشی ازخروج سرب از شبکه کریستالی در آخرین مراحل انجماد است. در حقیقت وجود عناصری مثل سیلیسیم، آلومینیوم و گازهای محلول در مایع، باعث راندن سرب از داخل شبکه خواهد شد.

وجود گوگرد، تلوریم و حتی عناصری مثل سلینم و تیتانیوم، هرچند خواص ماشینکاری را افزایش می دهند، اما علاوه بر افزایش مقاومت الکتریکی، سبب سرخ شکنندگی (Redshortness) مس نیز می گردند و از این رو، در کاهش خواص جوش پذیری مس مؤثرند.

روی

روی یکی از عناصر آلیاژ کننده اصلی مس به شمار می آید. آنچه در این بحث قابل ذکر است، تأثیر شدید روی، بر افزایش قابلیت جوش پذیری مس است. نکته قابل توجه دیگر بخارات سمی است که در حین جوشکاری ترکیبات مس و روی متصاعد می شوند که باید کاملاً مد نظر قرار گیرند.

قلع

به طور کلی قلع، در حدود 1 تا 10 درصد با افزایش حساسیت مس به بروز ترک های گرم، قابلیت جوش پذیری را کاهش می دهد. علاوه بر این، اکسید قلعی که در جریان جوشکاری حاصل شده و به صورت پودر سفیدی در کناره های جوش دیده می شود، بسیار شکننده بوده و استحکام جوش را تا حد زیادی از بین می برد. تنها حسن وجود مقادیر ناچیز قلع، کاهش بخارات سمی در جریان جوشکاری مس محتوی روی است.

بریلیوم، آلومینیوم و نیکل

وجود مقدار کمی از بریلیوم در مس، باعث می شود که خواص مکانیکی فلز حاصل با مس کاملاً متفاوت باشد. مقدار بریلیوم اضافه شده به مس، همواره از 2 درصد بیشتر و از 5/2 درصد کمتر است. زیرا اگر مقدار آن از 2 درصد کمتر باشد عملاً اثری روی خواص مکانیکی مس نداشته و اگر مقدار آن از 5/2 درصد تجاوز کند، آلیاژی شکننده به وجود می آید. خواص مکانیکی آلیاژ به عملیات حرارتی روی آن بستگی دارد. در هنگام جوشکاری باید با انتخاب صحیح نوع جریان و شدت قوس، لایه سخت اکسید برلیوم را از سطح آلیاژ زدود. مورد استعمال آلیاژ در مواقعی است که به فلزی احتیاج باشد که در هنگام ساختن جسم مورد نظر نرم و چکش خوار بوده و پس از ساختن جسم با انجام عملیات معینی بتوان آن را سخت کرد و جسم ساخته شده، خواص عالی مکانیکی داشته باشد. از مشخصات دیگر این آلیاژ، مقاومت عالی آن به خوردگی در مقابل هوا است.

نیکل در مس حل شده و باعث ریز شدن دانه ها می گردد. به طور کلی، نیکل سبب بالا رفتن استحکام کششی خواهد شد، بدون آن که از مقدار فاز    بکاهد. این عنصر مقاومت به خوردگی آلیاژ را به خصوص در مقابل آب دریا بالا می برد. آلیاژ را به خصوص در مقابل آب دریا بالا می برد. مقدار نیکل در این آلیاژها در حدود 2 تا 7 درصد است. آلیاژهای مس- نیکل را می توان مورد عملیات حرارتی قرار داد. مهمترین خاصیتی که این آلیاژ پیدا می کند، حفظ کردن سختی در حرارت های نسبتاً بالا تا حدود 500 درجه سانتیگراد و تغییر در انبساط حرارتی آن است. در هنگام جوشکاری این آلیاژها نیز برداشتن لایه اکسید نیکل سطح آلیاژ ضروری است که البته زحمت بسیار کمتری نسبت به لایه اکسید برلیوم و آلومینیوم دارد.

آلیاژهای مس- برلیوم- نیکل دار، دارای خواص مکانیکی و هدایت الکتریکی بالاتری نسبت به آلیاژ دوتایی هرکدام است. زیرا در این حالت، ترکیب بین فلزی بین بریلیوم و نیکل به وجود آمده در نتیجه، عملیات حرارتی در توزیع این ترکیب بین فلزی و افزایش بعضی خواص مکانیکی آلیاژ کاملاً مؤثر بوده و مورد لزوم است. این آلیاژها، در ساعت سازی دقیق برای ساختن رقاصک ساعت و فنرها به کار می روند و چون خاصیت مغناطیسی ندارند به فولادهای مشابه ترجیح داده می شوند.

آلومینیوم و مس دارای یک اتکتیک و یک اتکتوئید می باشند. فاز    در سرما و گرما چکش خوار بوده و آلیاژ تا 4/9 درصد آلومینیوم در سرما به صورت فاز   است. شبکه  در گرما چکش خوار بودهولی تا حرارت 565 درجه سانتیگراد پایدار است و پس از آن تجزیه می شود. بدین ترتیب، شبکه  در حالت تعادل در درجه حرارتی کمتر از 565 درجه نمی تواند وجود داشته باشد. وجود اتکوئید در دیاگرام تعادل دو فلز، امکان آب دادن آلیاژ را نشان می دهد و با آب دادن می توان شبکه  را خارج از دامنه پایدار بودن خود در سرما نیز به دست آورد. در حالت عادی، فاز  در درجه حرارت 565 درجه سانتیگراد تجزیه شده و تولید  می کند که شبکه  کاملاً سخت و شکننده است.

آلیاژهای مس- آلومینیوم، محتوی تا 5 درصد آلومینیوم، دارای جوش پذیری خوبی هستند اما وقتی درصد آلومینیوم تا 10 درصد افزایش پیدا می کند، آلیاژها ترد و سخت می شوند. آلیاژهای مس- آلومینیوم اغلب به صورت چندتایی بوده و با خود مقادیری آهن، نیکل یا منگنز دارند. هر سه عنصر گفته شده تأثیرات تقریباً نزدیکی روی آلیاژ مذکور دارند.

خواص مکانیکی این آلیاژها، تقریباً شبیه فولادهاست اما از مقاومت به خوردگی بسیار بالاتری برخوردارند. برای جوشکاری این آلیاژها، برداشتن لایه اکسید آلومینیوم سطحی از اهمیت ویژه ای برخوردار است، پس برای این منظور، استفاده از تمهیداتی که در بخش جوشکاری آلومینیوم ذکر شد، توصیه شده است. فاصله حرارتی انجماد آلیاژهای مس و آلومینیوم عملاً بسیار کم بوده و در نتیجه انقباض متمرکز حاصل در قطعه جوشکاری شده، نسبتاً عمیق خواهد بود و باید تدابیر لازم را در این مورد پیش بینی شود.

سیلیسیم

افزایش سیلسیم به مس باعث می شود که مقاومت به خوردگی آلیاژ بالا برود. مقدار سیلسیم در حدود 4 درصد توصیه شده است. این آلیاژ، در مقابل اسیدها و آمونیاک کاملاً مقاوم است و دارای خواص مشابه با برنزهاست ولی قیمت آن خیلی ارزان تر و سیالیت و خواص جوش پذیری بالاتری دارد. به طور کلی، اگر مقدار سیلیسیم در آلیاژ کم باشد (حدود 1/0 تا 5/0 درصد) روی خواص الکتریکی مس اثر نکرده ولی باعث افزایش خواص مکانیکی خواهد شد.

سیلیسیم با نیکل، ترکیب بین فلزی به فرمول Ni2Si می دهد که به طور یکنواخت در مس پخش شده و سختی آلیاژ را به حدود 200 برینل می رساند در حالی که استحکام کششی آن 60 تا 70 کیلوگرم بر میلی مترمربع خواهد بود. وجود مقادیری آهن نیز با ایجاد ترکیب بین فلزی Fe2Si باعث بهبود خواص مکانیکی فلزی خواهد شد. سیلسیم علاوه بر این، یک اکسیژن زدای موفق است.

فسفر

این عنصر، خواص مکانیکی مس را تقویت کرده ولی از مقدار هدایت الکتریکی آن می کاهد. فسفر در اغلب آلیاژهای مس به عنوان اکسیژن زدا به کار می رود و به دلیل افزایش شدید سیالیت، باعث ایجاد سطوح غیر یکنواخت می شود، به خصوص در مورد آلیاژهای محتوی، سرب، عملاً قادر به انجام اکسیژن زدایی نیست. مقدار فسفر مورد لزوم، معمولاً 02/0 تا 05/0 درصد است و جز در مورد آلومینیوم برنز، در سایر آلیاژها کم و بیش مورد استفاده قرار می گیرد. محصول فعل و انفعال فسفر (P2O5) به صورت گاز، علاوه بر اکسیژن زدایی، در خروج گازهای محلول نیز مؤثر است ولی از طرف دیگر، حذف شرایط اکسیدی در مذاب، باعث افزایش جذب هیدروژن خواهد شد. پس از القاء فسفر به آلیاژهای مس، همواره باید با افزایش سرعت جوشکاری و حفاظت کامل حوضچه جوش همراه باشد، تا از نفوذ مجدد هیدروژن جلوگیری شود.

لیتیم

لیتیم عنصر دیگری است که خاصیت اکسیژن زدایی آن تقریباً 10 برابر فسفر می باشد و علاوه بر احیاء اکسیدها، عمل اخراج گازهای محلول (هیدروژن) را نیز با تشکیل (هیدرورلیتیم) (LiH) تشدید می نماید. اشکال عمده فقط در نقطه ذوب LiO2 است که در شرایط جوشکاری به صورت بخار در می آیند.

 

کادمیم

کادمیم تأثیر چندانی بر هدایت الکتریکی مس ندارد ولی خواص مکانیکی آن را افزایش می دهد. آلیاژهای مس محتوی بیش از 25/1 درصد کادمیم به دلیل تشکیل اکسید کادمیم و افزایش نقطه ذوب آلیاژ، مشکلات کوچکی را برای جوشکاری قوس الکتریکی پدید می آورند که البته به سادگی مرتفع می شوند.

کرم

کرم عملاً بر خواص مقاومت الکتریکی مس تأثیری نداشته ولی خواص مکانیکی آن را افزایش می دهد. این عنصر، مانند برلیوم و آلومینیوم تولید اکسید مقاومی در سطح مس مذاب می کند. پس برای جوشکاری آلیاژهای مسی که محتوی کرم هستند، استفاده از گازهای محافظ حوضچه توصیه می شود.

به طور کلی، خاصیت هدایت الکتریکی و خواص مکانیکی، دو عامل متضاد بوده و عناصر اضافه شده به مس، باعث تقویت یکی و کاهش دیگری خواهد شد. باید در نظر داشت که هدایت الکتریکی مس خالص ماکزیمم بوده و اضافه کردن هیچ عنصری باعث بالا رفتن مقدار هدایت الکتریکی نمی شود.

آهن و منگنز

آهن اغلب به عنوان عنصر کمکی در آلیاژهای مس- آلومینیوم، مس- نیکل، برنج ها و برنزهای آلومینیوم به میزان 4/1 تا 5/3 درصد وجود دارد. آلیاژهای آهن دار، مس، نیازی به عملیات حرارتی بعدی ندارند زیرا وجود آهن سبب ریزدانه شدن آلیاژ شده و با تغییر در ساختار، تأثیر سرعت سرد شدن مذاب بر خواص مکانیکی را تقلیل می دهد. بنابراین وجود آهن به این مقدار تأثیری بر خواص جوش پذیری فلز ندارد.

منگنز در مس اثراتی مشابه اثرات نیکل دارد اما مقدار این تأثیرات، به مراتب کمتر است، بنابراین وجود منگنز در مقادیر 2 تا 3 درصد بر خواص جوش پذیری آلیاژهای مس تأثیری ندارد. 

دانلود بررسی قابلیت جوش پذیری و جوشکاری مس و آلیاژهای آن

دانلود گزارش کار آموزی آزمایشگاه عملیات حرارتی و فولادهای آلیاژی


گزارش کار آموزی آزمایشگاه عملیات حرارتی و فولادهای آلیاژی

بطور کل مراحل کار در این کارخانه بدین صورت است که قالبگیری اصلی ،‌بوسیله ماسه CO2 به همراه چسب سیلیکات سدیم می باشد که در آزمایشگاه ذرات ماسه مناسب ومورد نظر را پیدا می کنیم و بعد با آنها قالب تهیه می کنیم که البته ماسه پشت این قالبها ماسه سیلیسی می باشد از خود ماسه CO2 بعداز ذوب ریزی می توان بعنوان ماسه پشت استفاده کرد – از آنجایی که محصول عمده

دانلود گزارش کار آموزی آزمایشگاه عملیات حرارتی و فولادهای آلیاژی

پخت جداره نسوز  
آزمایشگاه عملیات حرارتی
فولادهای آلیاژی
تعمیر کوره القایی
ذوب فولادهای پرآلیاژی در کوره های القایی
دسته بندی گزارش کارآموزی و کارورزی
فرمت فایل doc
حجم فایل 33 کیلو بایت
تعداد صفحات فایل 38

فهرست مطالب

 

عنوان                                 صفحه

مقدمه (تاریخچه تاسیس شرکت)                   1

زمینه های فعالیت                         2

آزمایشگاه عملیات حرارتی                  3

فولادهای آلیاژی                           6

تعمیر کوره القایی                        9

ذوب فولادهای پرآلیاژی در کوره های القایی            10

محاسبات شارژ                          16

چدنهای سفید                           18

خلاصه ای روشهای گوگرد زدایی چدن               21

پوششهای نسوز داخل کوره های القائی               23

نکات مهم در خاک روبی و پخت جداره نسوز کوره های ذوب القایی 25

پخت جداره نسوز                           28

آنیل کامل                             29

آنیل همدما                            31

نرماله کردن                              32

زمینه های فعالیت

v    = مدلسازی – ریخته گری قطعات فولادی – ریخته گری قطعات چدنی– ماشین کاری – تراشکاری

v   تعداد پرسنل = 25 نفر               کارشناس = 3 نفر

v   تجهیزات ذوب = کوره القایی فرکانس متوسط باظرفیت   3500 Ky – کوره القایی فرکانس متوسط با ظرفیت 1 تن .

v   مجموعه تجهیزات متالوگرافی شامل پولیش و اچ نمونه ها .

آزمایشگاه مکانیکی

v   دستگاه تست کشش : به منظور اندازه گیری استحکام کشش ،‌مقاومت تسلیم ، درصد افزایش طول

v   دستگاه تست ضربه : به منظور اندازه گیری مقاومت به ضربه قطعات

آزمایشات غیر مخرب

  1. اولترا سونیک : به منظور بررسی عیوب داخلی قطعه .
  2. تست   PT: به منظور بررسی ترکهای سطحی .

 

 

 

آزمایشگاه عملیات حرارتی :

تجهیزات کارگاهی

A ‌ ) کوره عملیات حرارتی با ظرفیت  4/5m3  همراه با حمام آب و سیستم سیرکولاسیون  .

B ) دستگاه شات بلاست

D ) جرثقیل ( 2-3-6/5 ton )             C ) Plan  تولید گاز CO2  

E‌) سنگهای آویز ( شناور ) و سنگهای میزی

F  ) آمیاب وکلوخه کوب و تجهیزات انتخاب ماسه و بونکر نگهداری ماسه .

تجهیزات مدلسازی :

A  ) پنج کاره   

B ) اره فلکه

C ) دستگاه خراطی      

D‌) ابزار آلات وتجهیزات پنوماتیک مانند فرز انگشتی

E ) دریل                                            

F ) عمود بٌر 

بطور کل مراحل کار در این کارخانه بدین صورت است که قالبگیری اصلی ،‌بوسیله ماسه CO2 به همراه چسب سیلیکات سدیم می باشد که در آزمایشگاه ذرات ماسه مناسب ومورد نظر را پیدا می کنیم و بعد با آنها قالب تهیه می کنیم که البته ماسه پشت این قالبها ماسه سیلیسی می باشد . از خود ماسه CO2 بعداز ذوب ریزی می توان بعنوان ماسه پشت استفاده کرد – از آنجایی که محصول عمده این کارخانه والو بود ابتدا قالب آن را آماده کرده و سپس ماهپچه سازی می کردیم و از آنجایی که خواص ماهپچه با ماسه متفاوت است پس نیاز به چسب بیشتری دارد . سپس ماهپچه را خشک کرده و درون قالب قرار می دادیم وبعد بوسیله گاز CO2‌ این قالب محکم می شد . حال قالب برای ذوب ریزی آماده است . دراین کارخانه والوهایی به قطر 20 in – 10 in – 8 in – b in – 4 in – 3 in – 2 in  و با فشارهای مختلف ( 1so psi – 300 psi – 1500 psi  ) ساخته می شدند .

حال می خواهیم ذوب ریزی کنیم ولی قبل از آن مواد ذوب را کنترل می کنیم بطوری که طبق درخواست از چه آلیاژی استفاده کنیم بهتر است و چون اصول ذوب ریزی این کارخانه بیشتر مربوط به فولادهای آلیاژی می شود بعدا در مورد عناصر افرودنی به مذاب می نویسم .

درمورد ذوب ، ما ابتدا قراضه ها وبرگشتی ها را ذوب می کنیم و از ذوب یک نمونه آنالیز می کنیم که جواب آن سریعا باید به دست یکی از مهندسین برسد . سپس مهندس هم بوسیله تجربه و هم علم آنالیز ذوب اولیه را نگاه کرده و برای بدست آوردن خواص مورد نظر ذوب میزان درصد عناصر افزودنی را تشخیص می دهد .

بعنوان مثال                       

 تا   تا

ویا بعنوان مثال دیگر :

120 mn  12                  

 

 حال که ذوب مناسب بدست آمد قالبها را ذوب ریزی می کنیم بعد در آن طرف سوله بعداز منجمد شدن آنها را خالی می کنیم . پس این قطعات را سنگ می زنیم و مواد اضافی مثل سیستم راهگاهی وغیره را از قطعه جدا می کنیم و بعدقطعه را به کوره عملیات حرارتی منتقل می کنیم که بعدا راجع به این کوره بیشتر توضیح می دهم .

بعداز مرحله آنیل و عملیات حرارتی قطعه به دستگاه شات بلاست منتقل می شود یعنی تمیز و آماده برای تحویل می باشد .

این مطالب بطور کلی روش کار این کارخانه بود که شامل دو سوله نیزمی بود ونکته دیگر اینکه این شرکت به غیر از فولادهای آلیاژی ، ذوب ریزی چدن نیز می کرد ولی بیشتر 1 نوع چدن آن هم چدن پرکرم .

حال در ادامه می پردازیم به توضیح کوره های القایی – محاسبه شارژ- عمل شات بلاست – نسوز کوره القایی و … که بعضی موارد برگرفته شده از کتاب های عملیات حرارتی دکتر گلعذار بامواد قالبگیری برای ریخته گری فلزات ( محمدحسین شمسی) و بعضی نکات مربوط به کارخانه و تمرین آنجا می باشد .

فولادهای آلیاژی :

فولاد آلیاژی فولادیست که یک یا چند عنصر مثل : نیکل ، کرم ، منگنز ,مولیبدن ، وانادیم ، کبالت ، تیتانیم ، به آن اضافه شده باشد .

افزودن این عناصر خواصی از قبیل : نرمی ، سختی ، مقاومت در برابرزنگ خوردگی  ، مقاومت در برابر سایش ،‌مقاومت در برابر ضربه را به فولاد میدهد .

نام فولاد آلیاژی بستگی به عنصری دارد که باآن اضافه شده باشد برای جوشکاری آن اگر الکترود مناسب مصرف شده و جوشکاری آن بطرز صحیحی صورت گیرد استحکام ناحیه اتصال رضایت بخش خواهد بود .

عناصری که برای آلیاژ کردن بکار میروند هر کدام خواص مختلفی را در فولاد آلیاژی ایجاد می کنند که در زیر بطور مختصر تشریح می گردد  :

  1. 1.               کرم :

با اضافه نمودن مقدار معینی کرم به فولاد سختی آلیاژحاصل افزایش یافته و مقاومت آن را در برابر سائیدگی زیاد میکند بدون اینکه آلیاژ را ترد نماید ، کرم را  به تنهایی یا عناصر دیگری از قبیل : نیکل ، وانادیم ، مولیبدن ، ویا تنگستن به فولاد آلیاژ اضافه نمود .

  1. 2.               منگنز :

با اضافه کردن مقداری منگنز به فولاد ، ذرات فولاد حاصله کوچک شده و به همین دلیل استخوان بندی محکمتری بین ذرات فولاد بوجود آمده فلز را سخت میکند ، منگنز خاصیت آب رفتن فولاد را افزایش میدهد .

  1. 3.               مولیبدن :

با افزودن مقدار معینی مولیبدن به هر عنصر بغیر از کربن آنرا سخت و آب گیر مینماید و درعین حال آلیاژ نرم و محکمی را ایجاد می کند که قابل تراشکاری است .

این عنصر را می توان به تنهایی یا با عناصر دیگر بخصوص نیکل یا کرم و یا با هر دو آنها بفولاد اضافه نمود .

  1. 4.                              نیکل :

اضافه نمودن نیکل بفولاد بدون اینکه خاصیت نرم و چکش خواری آنرا تغییر دهد استحکام آنرا افزایش میدهد . با افزودن مقدار زیادی کرم بین 25 الی 35 درصد نه تنها استحکام آنرا افزایش می دهد بلکه این آلیاژ را در برابر زنگ خوردگی و ضربه کاملا مقاوم می سازد .

  1. 5.                              وانادیم :

با اضافه کردن مقدارمعینی عنصر وانادیم به فولاد از بزرگ شدن اندازه ذرات در درجه حرارت بحرانی جلوگیری کرده و بهمین علت فولادیکه مقداری وانادیم به آن اضافه شده باشد برای آب دادن و سخت کردن بسیار مناسب خواهد بود .

  1. 6.                              تنگستن :

اضافه نمودن تنگستن به فولاد معمولا برای فولادهایی است که بخواهند از آن ابزار های برنده مثل مته های مخصوص و قلمهای الماس درست کنند و علاوه براین مقاومت زیادی در برابر سائیدگی ایجاد نمایند .

  1. 7.                              کبالت :

اضافه نمودن این عنصر بفولاد بدین منظور است که فولاد بتواند حتی در حرارت قرمز مقاومت خود را حفظ نماید . بدین لحاظ مصرف این آلیاژ بیشتر در ساخت یاتاقانهای بربربنگی که در اثرحرارت فرسایش  زیادی را ایجاد مینمایند .

  1. 8.                              سیلیسیم :

سیلیسیم بعنوان یک احیاء کننده و بعنوان یک سخت کننده در هر دو فولادهای کربنی و آلیاژی بکار میرود . سه اثر مهم سیلیسیم در فولاد باید بدقت مورد توجه قرارگیرد

1)           سیلیسیم درجه حرارت بحرانی را بالا میبرد

2)  سیلیسیم استعداد گرافیته شدن و کربن گیری را زیاد می کند

3)  وقتی سیلیسیم با نیکل ، کرم ، و تنگستن ترکیب میشوند ،‌مقاومت به اکسیدآسیون در درجه حرارت بالا را افزایش میدهد .

 

تعمیر کوره القائی :

برای تعمیر کوره القایی چنانچه باید کوره برای چدن ریزی آماده شود بدلیل اسیدی بودن سرباره چدن از نسوزهای اسیدی مانند سیلیس استفاده می کنیم ( توسط آهنربا باید تمام براده های مغناطیسی آن بطور کامل گرفته شود ) وچنانچه برای فولاد ریزی باید آماده شود از نسوزهای قلیائی ( بدلیل بازی بودن سرباره فولاد ) استفاده میشود .

مراحلی که باید برای تعمیر انجام گیرد در صفحات روبه رو ذکر شده .

ذوب فولادهای پرآلیاژی درکوره های القائی

کوره های القائی برای ذوب فولادهای مقاوم در مقابل خوردگی کرم دار و کرم نیکل دار ، واحد مناسبی میباشند . دراین کوره ها افت عناصر آلیاژی بسیار کم است و میتوان با محاسبه دقیق بار درصد عناصر آلیاژی مناسب را در یک محدوده مجاز نگهداری کرد .

مزایای این کوره ها عبارتند از :

الف) پدیده جذب کربن که هنگام ذوب در کوره های قوسی از طریق الکترودها صورت میگیرد ، در فرآیند ذوب کوره های القائی وجود ندارد و بنابراین می توان بدون انجام عمل تصفیه فولادهایی با کربن کم را تولید کرد .

ب) به دلیل حرکت مداوم مذاب ، عمل یکنواخت شدن ترکیب شیمیائی مذاب بخوبی انجام شده و ناخالصیهای غیر فلزی و گازها به سطح مذاب رانده میشوند .

ج) به دلیل سرعت ذوب زیاد و سطح تماس کم کاهش عناصر آلیاژی هنگام انجام ذوب در کوره های القائی بسیار ناچیز است ( درهنگام شارژ افت عناصر آلیاژی حداکثر 5% در نظر گرفته میشود .

محدودیت ها :

الف) به دلیل حذف مرحله تصفیه ، بایستی گوگرد ،‌فسفر وکربن مواد شارژ در محدوده معینی قرارداشته باشد در هر حال عمل تصفیه را دراین کوره ها نیز می توان انجام داد .

ب) مواد شارژ بایستی ترکیب شیمیایی مشخص و دقیق داشته باشند ، ( این مواد عبارتند از : قراضه فولاد ، برگشتی کارگاه ، وفولاد آلیاژهای مختلف ) .

ج) سرباره این کوره غیر فعال ، انعطاف پذیر و سرد میباشد .

در ذوب فولادهای پرآلیاژی در کوره های القائی رعایت نکات زیر ضروری است :

1-  مواد شارژ باید تا حدامکان بصورت تنگ هم و فشرده قرارگیرند ،‌و ترکیب قراضه های مصرفی باید مشخص باشد . قراضه مصرفی باید عاری از کثافات و قطعات برگشتی ، عاری از ماسه و گرد و خاک باشند ، خشک بودن قراضه ها ضروری است.

2-  قطعات بزرگ در کناره دیواره کوره و قطعات کوچک در وسط قرار داده شوند .

3-  اجزائی از شارژ کوره که دارای نقطه ذوب بالا هستند باید در قسمت پایین بوته قرارگیرند .

4-  در طول عمل ذوب در صورت امکان ، شارژ کوره مداوم  فشرده شوند ، تا تراکم قسمتهای ذوب نشده بیشتر گردد .

5-  عناصر آلیاژی و فرو آلیاژهائی نظیر فرو مولیبدن ، نیکل و مس همراه شارژ در کوره بارگیری میشوند ، وسایر عناصر آلیاژی در حمام مذاب وبه ترتیب زیر اضافه می گردند :

الف – فرو کرم

ب- فرو سیلیسیم

ج- فروتیتانیم

6-  به محض ذوب شارژ باید برای جلوگیری از اکسیدآسیون یا احیاء مذاب سرباره را تشکیل داد . تشکیل سرباره با اضافه کردن مواد زیر صورت می گیرد :

7-  در کوره با آستراسیدی از شیشه خرده ، مخلوط شیشه خورده و شاموت و یا مخلوطی از آهک ، ماسه و فلورسپارخرد شده و درکوره با آستر بازی از مخلوط 70% آهک ، 20% فلورسپار ، و 10% پودر مگنزیت یا مخلوط 80% آهک و 20% فلوسپار استفاده میشود .

( عمرکوره با آستر بازی بیشتر از عمر کوره با آستر اسیدی است . ) عموما ذوب فولادهای آلیاژی درکوره های باآستر بازی صورت میگیرد .

 

تعیین %‌ عناصر مذاب

قبل از محاسبات شارژ و افزودن قراضه و مواد آلیاژی به کوره جهت بدست آوردن مذاب مورد نظر ، یک نمونه کوانتومتری از مذاب موجود در کوره القائی گرفته ، نمونه را پس از سرد شدن به دستگاه کوانتومتری داده این دستگاه یکی از دستگاههای پیشرفته اندازه گیری می باشد که براساس اشعه وارده بر سطح نمونه فلزی نوع و مقدار عناصر موجود دراین فلز را به مانشان میدهد .

با بدست آوردن اطلاعات لازم در مورد مذاب موجود در کوره  محاسبات شارژ  را انجام داده و آنگاه برحسب محاسبات مقدار قراضه و عناصر آلیاژی را به کوره اضافه می کنیم .

بعداز ذوب مواد اضافه شده به کوره وآماده شدن بار ، باردیگر برای صحت مذاب از نظر در صد عناصر خواسته شده ، یک نمونه کوانتو متری گرفته ، پس از آزمایش نتایج آزمایش را با مذاب خواسته شده مقایسه می کنیم درصورت صحیح بودن مذاب آماده میشود برای ریخته گری .

این نوع قراضه بشکل آچارمی باشد که بعلت درصد بالای نیکل جذب آهن ربانمیشود ( غیرمغناطیسی است ) . بنابراین به عنوان آچاری نگیر نام می بریم .

 

 

قراضه چدنی با ترکیب شیمیایی  به نام(آچاری بگیر)

مواد لازم

(  kg)

C

Si

Cr

Ni

Kg                   %

Kg                   %

Kg                   %

Kg                   %

استیل

620 kg

 

 

 

 

18

111/6

8

6/49

آچارنگیر

429kg

0/5

2

 

 

23

25/86

5/12

46

آچاربگیر

49kg

2

1

 

 

17

6/6

8/0

312/0

کک

kg210

38

8/79

 

 

 

 

 

 

فروسیلیسیم

30/7kg

 

 

75

23

 

 

 

 

2300

6/3

8/82

1

23

5/9

5/218

5/4

103

 

برای محاسبه آچاری بگیر را در (     X) و آچارنگیررا (   Y ) فرض می کنیم .

 

 

 

 

وزن آچاری بگیر که لازم داریم

 

 وزن آچار نگیر

 

 

حال تعداد بدست آمده را وارد جدول می کنیم . و % کربن را حساب می کنیم که مشخص میشود kg‌ 8/79 کربن لازم داریم . که چون گرانول موجود نیست از کک استفاده می کنیم که کوره القائی از هر کیلو گرم کک 38/0 کربن جذب می کند .

قراضه آهن لازم داریم . ( به کوره اضافه کنیم )

به دلیل در دسترس نبودن گرانول از کک استفاده کردیم که حدود 38%‌توسط کوره جذب و 38% کربن به ما می دهد .

 

دانلود گزارش کار آموزی آزمایشگاه عملیات حرارتی و فولادهای آلیاژی